深入理解redis(一)
一个开源的高性能键值存储数据库,支持多种数据结构如字符串、哈希、列表、集合等,常用于缓存、消息队列和持久化存储。
初识Redis
Redis是一种键值型的NoSql数据库,这里有两个关键字:
键值型
NoSql
其中键值型,是指Redis中存储的数据都是以key、value对的形式存储,而value的形式多种多样,可以是字符串、数值、甚至json:

而NoSql则是相对于传统关系型数据库而言,有很大差异的一种数据库。
认识NoSQL
NoSql可以翻译做Not Only Sql(不仅仅是SQL),或者是No Sql(非Sql的)数据库。是相对于传统关系型数据库而言,有很大差异的一种特殊的数据库,因此也称之为非关系型数据库。
结构化和非结构化
传统关系型数据库是结构化数据,每一张表都有严格的约束信息:字段名、字段数据类型、字段约束等等信息,插入的数据必须遵守这些约束:

而NoSql则对数据库格式没有严格约束,往往形式松散,自由。
可以是键值型:
也可以是文档型(elasticsearch):
甚至可以是图格式:

关联和非关联
传统数据库的表与表之间往往存在关联,例如外键:

而非关系型数据库不存在关联关系,要维护关系要么靠代码中的业务逻辑,要么靠数据之间的耦合:
{
id: 1,
name: "张三",
orders: [
{
id: 1,
item: {
id: 10, title: "荣耀6", price: 4999
}
},
{
id: 2,
item: {
id: 20, title: "小米11", price: 3999
}
}
]
}此处要维护“张三”的订单与商品“荣耀”和“小米11”的关系,不得不冗余的将这两个商品保存在张三的订单文档中,不够优雅。还是建议用业务来维护关联关系。
查询方式
传统关系型数据库会基于Sql语句做查询,语法有统一标准;
而不同的非关系数据库查询语法差异极大,五花八门各种各样。

事务
传统关系型数据库能满足事务ACID的原则。
而非关系型数据库往往不支持事务,或者不能严格保证ACID的特性,只能实现基本的一致性。
总结
除了上述四点以外,在存储方式、扩展性、查询性能上关系型与非关系型也都有着显著差异,总结如下:

存储方式
关系型数据库基于磁盘进行存储,会有大量的磁盘IO,对性能有一定影响
非关系型数据库,他们的操作更多的是依赖于内存来操作,内存的读写速度会非常快,性能自然会好一些
扩展性
关系型数据库集群模式一般是主从,主从数据一致,起到数据备份的作用,称为垂直扩展。
非关系型数据库可以将数据拆分,存储在不同机器上,可以保存海量数据,解决内存大小有限的问题。称为水平扩展。
关系型数据库因为表之间存在关联关系,如果做水平扩展会给数据查询带来很多麻烦。
认识Redis
Redis诞生于2009年全称是Remote Dictionary Server 远程词典服务器,是一个基于内存的键值型NoSQL数据库。
特征:
键值(key-value)型,value支持多种不同数据结构,功能丰富
单线程,每个命令具备原子性
低延迟,速度快(基于内存、IO多路复用、良好的编码)。
支持数据持久化
支持主从集群、分片集群
支持多语言客户端
安装Redis
大多数企业都是基于Linux服务器来部署项目。
依赖库
Redis是基于C语言编写的,因此首先需要安装Redis所需要的gcc依赖:
yum install -y gcc tcl解压
解压缩:
tar -xzf redis-6.2.6.tar.gz进入redis目录:
cd redis-6.2.6运行编译命令:
make && make install如果没有出错,应该就安装成功了。
启动
redis的启动方式有很多种,例如:
默认启动
指定配置启动
开机自启
默认启动
安装完成后,在任意目录输入redis-server命令即可启动Redis:
redis-server如图:

这种启动属于前台启动,会阻塞整个会话窗口,窗口关闭或者按下CTRL + C则Redis停止。不推荐使用。
指定配置启动
如果要让Redis以后台方式启动,则必须修改Redis配置文件,就在我们之前解压的redis安装包下(/usr/local/src/redis-6.2.6),名字叫redis.conf:

我们先将这个配置文件备份一份:
cp redis.conf redis.conf.bak然后修改redis.conf文件中的一些配置:
## 允许访问的地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问,生产环境不要设置为0.0.0.0
bind 0.0.0.0
## 守护进程,修改为yes后即可后台运行
daemonize yes
## 密码,设置后访问Redis必须输入密码
requirepass 123321Redis的其它常见配置:
## 监听的端口
port 6379
## 工作目录,默认是当前目录,也就是运行redis-server时的命令,日志、持久化等文件会保存在这个目录
dir .
## 数据库数量,设置为1,代表只使用1个库,默认有16个库,编号0~15
databases 1
## 设置redis能够使用的最大内存
maxmemory 512mb
## 日志文件,默认为空,不记录日志,可以指定日志文件名
logfile "redis.log"启动Redis:
## 进入redis安装目录
cd /usr/local/src/redis-6.2.6
## 启动
redis-server redis.conf停止服务:
## 利用redis-cli来执行 shutdown 命令,即可停止 Redis 服务,
## 因为之前配置了密码,因此需要通过 -u 来指定密码
redis-cli -u 123321 shutdown开机自启
需要配置系统服务,这里不再赘述。
Redis常见命令
Redis是典型的key-value数据库,key一般是字符串,而value包含很多不同的数据类型:

Redis为了方便我们学习,将操作不同数据类型的命令也做了分组,在官网( https://redis.io/commands )可以查看到不同的命令:
不同类型的命令称为一个group,我们也可以通过help命令来查看各种不同group的命令:

通用命令
通用指令是部分数据类型的,都可以使用的指令,常见的有:
KEYS:查看符合模板的所有key
DEL:删除一个指定的key
EXISTS:判断key是否存在
EXPIRE:给一个key设置有效期,有效期到期时该key会被自动删除
TTL:查看一个KEY的剩余有效期
通过help [command] 可以查看一个命令的具体用法,例如:
## 查看keys命令的帮助信息:
127.0.0.1:6379> help keys
KEYS pattern
summary: Find all keys matching the given pattern
since: 1.0.0
group: genericString类型
String类型,也就是字符串类型,是Redis中最简单的存储类型。
其value是字符串,不过根据字符串的格式不同,又可以分为3类:
string:普通字符串
int:整数类型,可以做自增、自减操作
float:浮点类型,可以做自增、自减操作
不管是哪种格式,底层都是字节数组形式存储,只不过是编码方式不同。字符串类型的最大空间不能超过512m.

String常见命令
String的常见命令有:
SET:添加或者修改已经存在的一个String类型的键值对
GET:根据key获取String类型的value
MSET:批量添加多个String类型的键值对
MGET:根据多个key获取多个String类型的value
INCR:让一个整型的key自增1
INCRBY:让一个整型的key自增并指定步长,例如:incrby num 2 让num值自增2
INCRBYFLOAT:让一个浮点类型的数字自增并指定步长
SETNX:添加一个String类型的键值对,前提是这个key不存在,否则不执行
SETEX:添加一个String类型的键值对,并且指定有效期
Key结构
Redis没有类似MySQL中的Table的概念,我们该如何区分不同类型的key呢?
例如,需要存储用户、商品信息到redis,有一个用户id是1,有一个商品id恰好也是1,此时如果使用id作为key,那就会冲突了,该怎么办?
我们可以通过给key添加前缀加以区分,不过这个前缀不是随便加的,有一定的规范:
Redis的key允许有多个单词形成层级结构,多个单词之间用':'隔开,格式如下:
项目名:业务名:类型:idHash类型
Hash类型,也叫散列,其value是一个无序字典,类似于Java中的HashMap结构。
String结构是将对象序列化为JSON字符串后存储,当需要修改对象某个字段时很不方便:

Hash结构可以将对象中的每个字段独立存储,可以针对单个字段做CRUD:

Hash的常见命令有:
HSET key field value:添加或者修改hash类型key的field的值
HGET key field:获取一个hash类型key的field的值
HMSET:批量添加多个hash类型key的field的值
HMGET:批量获取多个hash类型key的field的值
HGETALL:获取一个hash类型的key中的所有的field和value
HKEYS:获取一个hash类型的key中的所有的field
HINCRBY:让一个hash类型key的字段值自增并指定步长
HSETNX:添加一个hash类型的key的field值,前提是这个field不存在,否则不执行
List类型
Redis中的List类型与Java中的LinkedList类似,可以看做是一个双向链表结构。既可以支持正向检索和也可以支持反向检索。
特征也与LinkedList类似:
有序
元素可以重复
插入和删除快
查询速度一般
常用来存储一个有序数据,例如:朋友圈点赞列表,评论列表等。
List的常见命令有:
LPUSH key element ... :向列表左侧插入一个或多个元素
LPOP key:移除并返回列表左侧的第一个元素,没有则返回nil
RPUSH key element ... :向列表右侧插入一个或多个元素
RPOP key:移除并返回列表右侧的第一个元素
LRANGE key star end:返回一段角标范围内的所有元素
BLPOP和BRPOP:与LPOP和RPOP类似,只不过在没有元素时等待指定时间,而不是直接返回nil
Set类型
Redis的Set结构与Java中的HashSet类似,可以看做是一个value为null的HashMap。因为也是一个hash表,因此具备与HashSet类似的特征:
无序
元素不可重复
查找快
支持交集、并集、差集等功能
Set的常见命令有:
SADD key member ... :向set中添加一个或多个元素
SREM key member ... : 移除set中的指定元素
SCARD key: 返回set中元素的个数
SISMEMBER key member:判断一个元素是否存在于set中
SMEMBERS:获取set中的所有元素
SINTER key1 key2 ... :求key1与key2的交集
SortedSet类型
Redis的SortedSet是一个可排序的set集合,与Java中的TreeSet有些类似,但底层数据结构却差别很大。SortedSet中的每一个元素都带有一个score属性,可以基于score属性对元素排序,底层的实现是一个跳表(SkipList)加 hash表。
SortedSet具备下列特性:
可排序
元素不重复
查询速度快
因为SortedSet的可排序特性,经常被用来实现排行榜这样的功能。
SortedSet的常见命令有:
ZADD key score member:添加一个或多个元素到sorted set ,如果已经存在则更新其score值
ZREM key member:删除sorted set中的一个指定元素
ZSCORE key member : 获取sorted set中的指定元素的score值
ZRANK key member:获取sorted set 中的指定元素的排名
ZCARD key:获取sorted set中的元素个数
ZCOUNT key min max:统计score值在给定范围内的所有元素的个数
ZINCRBY key increment member:让sorted set中的指定元素自增,步长为指定的increment值
ZRANGE key min max:按照score排序后,获取指定排名范围内的元素
ZRANGEBYSCORE key min max:按照score排序后,获取指定score范围内的元素
ZDIFF、ZINTER、ZUNION:求差集、交集、并集
注意:所有的排名默认都是升序,如果要降序则在命令的Z后面添加REV即可,例如:
升序获取sorted set 中的指定元素的排名:ZRANK key member
降序获取sorted set 中的指定元素的排名:ZREVRANK key memeber
Redis的Java客户端
在Redis官网中提供了各种语言的客户端,地址:https://redis.io/docs/clients/
其中Java客户端也包含很多:
Jedis和Lettuce:这两个主要是提供了Redis命令对应的API,方便我们操作Redis,而SpringDataRedis又对这两种做了抽象和封装,因此我们后期会直接以SpringDataRedis来学习。
Redisson:是在Redis基础上实现了分布式的可伸缩的java数据结构,例如Map、Queue等,而且支持跨进程的同步机制:Lock、Semaphore等待,比较适合用来实现特殊的功能需求。
Jedis客户端
Jedis的官网地址: https://github.com/redis/jedis
快速入门
我们先来个快速入门:
1)引入依赖:
<!--jedis-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.7.0</version>
</dependency>
<!--单元测试-->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.7.0</version>
<scope>test</scope>
</dependency>2)建立连接
新建一个单元测试类,内容如下:
private Jedis jedis;
@BeforeEach
void setUp() {
// 1.建立连接
// jedis = new Jedis("192.168.150.101", 6379);
jedis = JedisConnectionFactory.getJedis();
// 2.设置密码
jedis.auth("123321");
// 3.选择库
jedis.select(0);
}3)测试:
@Test
void testString() {
// 存入数据
String result = jedis.set("name", "虎哥");
System.out.println("result = " + result);
// 获取数据
String name = jedis.get("name");
System.out.println("name = " + name);
}
@Test
void testHash() {
// 插入hash数据
jedis.hset("user:1", "name", "Jack");
jedis.hset("user:1", "age", "21");
// 获取
Map<String, String> map = jedis.hgetAll("user:1");
System.out.println(map);
}4)释放资源
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}连接池
Jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,因此我们推荐大家使用Jedis连接池代替Jedis的直连方式。
package com.heima.jedis.util;
import redis.clients.jedis.*;
public class JedisConnectionFactory {
private static JedisPool jedisPool;
static {
// 配置连接池
JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxTotal(8);
poolConfig.setMaxIdle(8);
poolConfig.setMinIdle(0);
poolConfig.setMaxWaitMillis(1000);
// 创建连接池对象,参数:连接池配置、服务端ip、服务端端口、超时时间、密码
jedisPool = new JedisPool(poolConfig, "192.168.150.101", 6379, 1000, "123321");
}
public static Jedis getJedis(){
return jedisPool.getResource();
}
}SpringDataRedis客户端
SpringData是Spring中数据操作的模块,包含对各种数据库的集成,其中对Redis的集成模块就叫做SpringDataRedis,官网地址:https://spring.io/projects/spring-data-redis
提供了对不同Redis客户端的整合(Lettuce和Jedis)
提供了RedisTemplate统一API来操作Redis
支持Redis的发布订阅模型
支持Redis哨兵和Redis集群
支持基于Lettuce的响应式编程
支持基于JDK、JSON、字符串、Spring对象的数据序列化及反序列化
支持基于Redis的JDKCollection实现
SpringDataRedis中提供了RedisTemplate工具类,其中封装了各种对Redis的操作。并且将不同数据类型的操作API封装到了不同的类型中:

快速入门
SpringBoot已经提供了对SpringDataRedis的支持,使用非常简单。
首先,新建一个maven项目,然后按照下面步骤执行:
1)引入依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.5.7</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.heima</groupId>
<artifactId>redis-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>redis-demo</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<!--redis依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--common-pool-->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>
<!--Jackson依赖-->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>2)配置Redis
spring:
redis:
host: 192.168.150.101
port: 6379
password: 123321
lettuce:
pool:
max-active: 8
max-idle: 8
min-idle: 0
max-wait: 100ms3)注入RedisTemplate
因为有了SpringBoot的自动装配,我们可以拿来就用:
@SpringBootTest
class RedisStringTests {
@Autowired
private RedisTemplate redisTemplate;
}4)编写测试
@SpringBootTest
class RedisStringTests {
@Autowired
private RedisTemplate edisTemplate;
@Test
void testString() {
// 写入一条String数据
redisTemplate.opsForValue().set("name", "虎哥");
// 获取string数据
Object name = stringRedisTemplate.opsForValue().get("name");
System.out.println("name = " + name);
}
}自定义序列化
RedisTemplate可以接收任意Object作为值写入Redis:

只不过写入前会把Object序列化为字节形式,默认是采用JDK序列化,得到的结果是这样的:

缺点:
可读性差
内存占用较大
我们可以自定义RedisTemplate的序列化方式,代码如下:
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory){
// 创建RedisTemplate对象
RedisTemplate<String, Object> template = new RedisTemplate<>();
// 设置连接工厂
template.setConnectionFactory(connectionFactory);
// 创建JSON序列化工具
GenericJackson2JsonRedisSerializer jsonRedisSerializer =
new GenericJackson2JsonRedisSerializer();
// 设置Key的序列化
template.setKeySerializer(RedisSerializer.string());
template.setHashKeySerializer(RedisSerializer.string());
// 设置Value的序列化
template.setValueSerializer(jsonRedisSerializer);
template.setHashValueSerializer(jsonRedisSerializer);
// 返回
return template;
}
}这里采用了JSON序列化来代替默认的JDK序列化方式。最终结果如图:

整体可读性有了很大提升,并且能将Java对象自动的序列化为JSON字符串,并且查询时能自动把JSON反序列化为Java对象。不过,其中记录了序列化时对应的class名称,目的是为了查询时实现自动反序列化。这会带来额外的内存开销。
StringRedisTemplate
为了节省内存空间,我们可以不使用JSON序列化器来处理value,而是统一使用String序列化器,要求只能存储String类型的key和value。当需要存储Java对象时,手动完成对象的序列化和反序列化。

因为存入和读取时的序列化及反序列化都是我们自己实现的,SpringDataRedis就不会将class信息写入Redis了。
这种用法比较普遍,因此SpringDataRedis就提供了RedisTemplate的子类:StringRedisTemplate,它的key和value的序列化方式默认就是String方式。

省去了我们自定义RedisTemplate的序列化方式的步骤,而是直接使用:
@Autowired
private StringRedisTemplate stringRedisTemplate;
// JSON序列化工具
private static final ObjectMapper mapper = new ObjectMapper();
@Test
void testSaveUser() throws JsonProcessingException {
// 创建对象
User user = new User("虎哥", 21);
// 手动序列化
String json = mapper.writeValueAsString(user);
// 写入数据
stringRedisTemplate.opsForValue().set("user:200", json);
// 获取数据
String jsonUser = stringRedisTemplate.opsForValue().get("user:200");
// 手动反序列化
User user1 = mapper.readValue(jsonUser, User.class);
System.out.println("user1 = " + user1);
}场景运用
商户查询缓存
标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。

核心实现
代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。

缓存更新策略
缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。
内存淘汰: redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)。
超时剔除: 当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存。
主动更新: 我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题。

数据库缓存不一致解决方案
由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:
用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案

综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题
操作缓存和数据库时有三个问题需要考虑:
如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来
删除缓存还是更新缓存?
更新缓存:每次更新数据库都更新缓存,无效写操作较多
删除缓存:更新数据库时让缓存失效,查询时再更新缓存
如何保证缓存与数据库的操作的同时成功或失败?
单体系统,将缓存与数据库操作放在一个事务
分布式系统,利用TCC等分布式事务方案
应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。
先操作缓存还是先操作数据库?
先删除缓存,再操作数据库
先操作数据库,再删除缓存
综合考虑还是先操作数据库,再删除缓存更优。
双写一致&解决思路
根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间
根据id修改店铺时,先修改数据库,再删除缓存
修改重点代码1:修改ShopServiceImpl的queryById方法
设置redis缓存时添加过期时间

修改重点代码2
代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题。

缓存穿透&解决思路
缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
常见的解决方案有两种:
缓存空对象
优点:实现简单,维护方便
缺点:
额外的内存消耗
可能造成短期的不一致
布隆过滤
优点:内存占用较少,没有多余key
缺点:
实现复杂
存在误判可能
缓存空对象思路分析: 当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了
布隆过滤: 布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回。这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。

总结
缓存穿透产生的原因是什么?
- 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力
缓存穿透的解决方案有哪些?
缓存null值
布隆过滤
增强id的复杂度,避免被猜测id规律
做好数据的基础格式校验
加强用户权限校验
做好热点参数的限流
缓存雪崩&解决思路
缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
给不同的Key的TTL添加随机值
利用Redis集群提高服务的可用性
给缓存业务添加降级限流策略
给业务添加多级缓存

缓存击穿&解决思路
缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
常见的解决方案有两种:
互斥锁
逻辑过期
逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

互斥锁
解决方案一、使用锁来解决:
因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

逻辑过期
解决方案二、逻辑过期方案
方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。
我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。
这种方案巧妙在于 ,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。


方案对比
互斥锁方案: 由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响。
逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来比较复杂。

互斥锁实现
核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询
如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿。

操作锁的代码:
核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}操作代码:
public Shop queryWithMutex(Long id) {
String key = CACHE_SHOP_KEY + id;
// 1、从redis中查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get("key");
// 2、判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
//判断命中的值是否是空值
if (shopJson != null) {
//返回一个错误信息
return null;
}
// 4.实现缓存重构
//4.1 获取互斥锁
String lockKey = "lock:shop:" + id;
Shop shop = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2 判断否获取成功
if(!isLock){
//4.3 失败,则休眠重试
Thread.sleep(50);
return queryWithMutex(id);
}
//4.4 成功,根据id查询数据库
shop = getById(id);
// 5.不存在,返回错误
if(shop == null){
//将空值写入redis
stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
//返回错误信息
return null;
}
//6.写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);
}catch (Exception e){
throw new RuntimeException(e);
}
finally {
//7.释放互斥锁
unlock(lockKey);
}
return shop;
}逻辑过期实现
需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题
思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

步骤一、
如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。
@Data
public class RedisData {
private LocalDateTime expireTime;
private Object data;
}步骤二、
在ShopServiceImpl 新增此方法,利用单元测试进行缓存预热

在测试类中

步骤三
ShopServiceImpl
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
CACHE_REBUILD_EXECUTOR.submit( ()->{
try{
//重建缓存
this.saveShop2Redis(id,20L);
}catch (Exception e){
throw new RuntimeException(e);
}finally {
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}通用Redis工具类封装
基于StringRedisTemplate封装一个缓存工具类,满足下列需求:
方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
@Slf4j
@Component
public class CacheClient {
private final StringRedisTemplate stringRedisTemplate;
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public CacheClient(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public void set(String key, Object value, Long time, TimeUnit unit) {
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
}
public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
// 设置逻辑过期
RedisData redisData = new RedisData();
redisData.setData(value);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
// 写入Redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
}
public <R,ID> R queryWithPassThrough(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(json)) {
// 3.存在,直接返回
return JSONUtil.toBean(json, type);
}
// 判断命中的是否是空值
if (json != null) {
// 返回一个错误信息
return null;
}
// 4.不存在,根据id查询数据库
R r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
return r;
}
public <R, ID> R queryWithLogicalExpire(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return r;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
// 6.3.成功,开启独立线程,实现缓存重建
CACHE_REBUILD_EXECUTOR.submit(() -> {
try {
// 查询数据库
R newR = dbFallback.apply(id);
// 重建缓存
this.setWithLogicalExpire(key, newR, time, unit);
} catch (Exception e) {
throw new RuntimeException(e);
}finally {
// 释放锁
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return r;
}
public <R, ID> R queryWithMutex(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, type);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return null;
}
// 4.实现缓存重建
// 4.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
R r = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2.判断是否获取成功
if (!isLock) {
// 4.3.获取锁失败,休眠并重试
Thread.sleep(50);
return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
}
// 4.4.获取锁成功,根据id查询数据库
r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}finally {
// 7.释放锁
unlock(lockKey);
}
// 8.返回
return r;
}
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}
}在ShopServiceImpl 中使用:
@Resource
private CacheClient cacheClient;
@Override
public Result queryById(Long id) {
// 解决缓存穿透
Shop shop = cacheClient
.queryWithPassThrough(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 互斥锁解决缓存击穿
// Shop shop = cacheClient
// .queryWithMutex(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 逻辑过期解决缓存击穿
// Shop shop = cacheClient
// .queryWithLogicalExpire(CACHE_SHOP_KEY, id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);
if (shop == null) {
return Result.fail("店铺不存在!");
}
// 7.返回
return Result.ok(shop);
}实现全局唯一ID
场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。
场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。
全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
ID的组成部分:符号位:1bit,永远为0。 时间戳:31bit,以秒为单位,可以使用69年。 序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID。
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;
private StringRedisTemplate stringRedisTemplate;
public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
// 2.2.自增长
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
// 3.拼接并返回
return timestamp << COUNT_BITS | count;
}
}秒杀下单

秒杀下单应该思考的内容:
下单时需要判断两点:
秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
库存是否充足,不足则无法下单
下单核心逻辑分析:
当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件
比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。

实现
VoucherOrderServiceImpl
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//6.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 6.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2.用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}超卖问题分析
有关超卖问题分析:在原有代码中是这么写的
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
//5,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:见下图:

悲观锁:
悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
乐观锁:
乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas
乐观锁的典型代表:就是cas,利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值
其中do while 是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;乐观锁解决超卖
修改代码方案一、
VoucherOrderServiceImpl 在扣减库存时,改为:
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1") //set stock = stock -1
.eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update(); //where id = ? and stock = ?以上逻辑的核心含义是:只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败
修改代码方案二、
之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改成stock大于0 即可
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0一人一单
需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单
现在的问题在于:
优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单
具体操作逻辑如下:比如时间是否充足,如果时间充足,则进一步判断库存是否足够,然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单。

初步代码:增加一人一单逻辑
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
// 5.一人一单逻辑
// 5.1.用户id
Long userId = UserHolder.getUser().getId();
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
//6,扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update();
if (!success) {
//扣减库存
return Result.fail("库存不足!");
}
//7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
return Result.ok(orderId);
}存在问题: 现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是操作。
注意: 在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁
@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}但是这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度 是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,以下这段代码需要修改为: intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法。
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}
}但是以上代码还是存在问题,问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:
在seckillVoucher 方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度。

但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务。

(PS:汗流浃背了。。。)
集群环境下的并发问题
通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。
1、我们将服务启动两份,端口分别为8081和8082
2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡

具体操作(略)
有关锁失效原因分析
由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。

分布式锁
基本原理和实现方式对比
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路。

那么分布式锁他应该满足一些什么样的条件呢?
可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思
互斥:互斥是分布式锁的最基本的条件,使得程序串行执行
高可用:程序不易崩溃,时时刻刻都保证较高的可用性
高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能
安全性:安全也是程序中必不可少的一环

常见的分布式锁有三种
Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见
Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁
Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案,由于本套视频并不讲解zookeeper的原理和分布式锁的实现,所以不过多阐述

Redis分布式锁核心
实现分布式锁时需要实现的两个基本方法:
获取锁:
互斥:确保只能有一个线程获取锁
非阻塞:尝试一次,成功返回true,失败返回false
释放锁:
手动释放
超时释放:获取锁时添加一个超时时间
核心思路:
我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可。
实现分布式锁
锁的基本接口

SimpleRedisLock
利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = Thread.currentThread().getId()
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}释放锁逻辑
SimpleRedisLock
释放锁,防止删除别人的锁
public void unlock() {
//通过del删除锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}修改业务代码
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
Long userId = UserHolder.getUser().getId();
//创建锁对象(新增代码)
SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
//获取锁对象
boolean isLock = lock.tryLock(1200);
//加锁失败
if (!isLock) {
return Result.fail("不允许重复下单");
}
try {
//获取代理对象(事务)
IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
return proxy.createVoucherOrder(voucherId);
} finally {
//释放锁
lock.unlock();
}
}锁误删
逻辑说明:
持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明
解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

锁误删解决思路
需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(可以用UUID表示) 在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致
如果一致则释放锁
如果不一致则不释放锁
核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。

具体代码如下:加锁
private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}释放锁
public void unlock() {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁中的标示
String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
// 判断标示是否一致
if(threadId.equals(id)) {
// 释放锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
}分布式锁的原子性
更为极端的误删逻辑说明:
线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的。
Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,这里重点介绍Redis提供的调用函数,我们可以使用lua去操作redis,又能保证他的原子性,这样就可以实现拿锁比锁删锁是一个原子性动作了。
这里重点介绍Redis提供的调用函数,语法如下:
redis.call('命令名称', 'key', '其它参数', ...)例如,要执行set name jack,则脚本是这样:
## 执行 set name jack
redis.call('set', 'name', 'jack')例如,要先执行set name Rose,再执行get name,则脚本如下:
## 先执行 set name jack
redis.call('set', 'name', 'Rose')
## 再执行 get name
local name = redis.call('get', 'name')
## 返回
return name如果脚本中的key、value不想写死,可以作为参数传递。key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:

接下来我们来回一下我们释放锁的逻辑:
释放锁的业务流程是这样的
1、获取锁中的线程标示
2、判断是否与指定的标示(当前线程标示)一致
3、如果一致则释放锁(删除)
4、如果不一致则什么都不做
如果用Lua脚本来表示则是这样的:
-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
-- 一致,则删除锁
return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0利用Java代码调用Lua脚本改造分布式锁
我们的RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系就如下图:

java代码
private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
static {
UNLOCK_SCRIPT = new DefaultRedisScript<>();
UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
UNLOCK_SCRIPT.setResultType(Long.class);
}
public void unlock() {
// 调用lua脚本
stringRedisTemplate.execute(
UNLOCK_SCRIPT,
Collections.singletonList(KEY_PREFIX + name),
ID_PREFIX + Thread.currentThread().getId());
}
//经过以上代码改造后,我们就能够实现 拿锁比锁删锁的原子性动作了~redission
基于setnx实现的分布式锁存在下面的问题:
重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。
不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。
**超时释放:**我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患
主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。
那么什么是Redission呢
Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。
Redission提供了分布式锁的多种多样的功能

如何使用
引入依赖:
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.6</version>
</dependency>配置Redisson客户端:
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redissonClient(){
// 配置
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.150.101:6379")
.setPassword("123321");
// 创建RedissonClient对象
return Redisson.create(config);
}
}如何使用Redission的分布式锁
@Resource
private RedissionClient redissonClient;
@Test
void testRedisson() throws Exception{
//获取锁(可重入),指定锁的名称
RLock lock = redissonClient.getLock("anyLock");
//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
//判断获取锁成功
if(isLock){
try{
System.out.println("执行业务");
}finally{
//释放锁
lock.unlock();
}
}
}在 VoucherOrderServiceImpl
注入RedissonClient
@Resource
private RedissonClient redissonClient;
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
Long userId = UserHolder.getUser().getId();
//创建锁对象 这个代码不用了,因为我们现在要使用分布式锁
//SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
RLock lock = redissonClient.getLock("lock:order:" + userId);
//获取锁对象
boolean isLock = lock.tryLock();
//加锁失败
if (!isLock) {
return Result.fail("不允许重复下单");
}
try {
//获取代理对象(事务)
IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
return proxy.createVoucherOrder(voucherId);
} finally {
//释放锁
lock.unlock();
}
}redission可重入锁原理
在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。
在redission中,我们的也支持支持可重入锁
Redisson是基于hash结构实现的,记录线程id和重入次数。代替了自定义锁时用的string结构。每一次获取锁的时候先判断锁是否存在,如果不存在就直接获取,如果已经存在那么不代表获取锁失败了,这时候如果发现线程标识就是当前线程,那么就代表我可以再次获取,只用把重入次数加1。将来在释放锁的时候,每释放一次,重入次数就减一,知道重入次数减为0,证明走到最外层,所有业务都结束了,在真正的释放锁。从而实现所的可重入。这个和jdk提供的reententLock原理是基本一致的。

锁重试和WatchDog机制
Redission的锁重试机制是在Redisson是基于信号量,和PubSub发布订阅这样功能实现的。在第一次尝试获取锁失败以后,不是立即失败,而是做一个等待。等待什么呢?等待一个释放锁的消息,利用pubsub机制。而获取锁成功的线程在释放锁的时候去发布这样一个消息,从而被捕获到。当捕获到这个消息时,就可以去重新尝试获取锁了,如果再次获取又失败了,就可以继续去等待这样一个锁释放的信号,然后再次去重试,从而实现重试机制。当然这个重试也不是无限制的,会有一个等待的时间,如果超过了时间就不在等待了。因为重试机制采用了等待唤醒这种方案,所以并不会过多的占用cpu。效率还是不错的。
WatchDog机制可以延续锁时间。默认情况下,如果锁超过默认时间还没有结束,看门狗会自动续期1/3 的时间。
MultiLock原理
为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例
此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。
为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

MutiLock 加锁原理:
当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去进行重试。
秒杀优化

思路分析
回顾一下下单流程
当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤
1、查询优惠卷
2、判断秒杀库存是否足够
3、查询订单
4、校验是否是一人一单
5、扣减库存
6、创建订单
在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?
我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作
当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

秒杀资格判断
需求:
新增秒杀优惠券的同时,将优惠券信息保存到Redis中
基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

VoucherServiceImpl
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
//SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
//private static final String SECKILL_STOCK_KEY ="seckill:stock:"
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}完整lua脚本
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0当以上lua表达式执行完毕后,剩下的就是根据步骤3,4来执行我们接下来的任务了
VoucherOrderServiceImpl
@Override
public Result seckillVoucher(Long voucherId) {
//获取用户
Long userId = UserHolder.getUser().getId();
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
//TODO 保存阻塞队列
// 3.返回订单id
return Result.ok(orderId);
}基于阻塞队列实现秒杀优化
VoucherOrderServiceImpl
修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行
//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息
private class VoucherOrderHandler implements Runnable{
@Override
public void run() {
while (true){
try {
// 1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
// 2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
private void handleVoucherOrder(VoucherOrder voucherOrder) {
//1.获取用户
Long userId = voucherOrder.getUserId();
// 2.创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
// 3.尝试获取锁
boolean isLock = redisLock.lock();
// 4.判断是否获得锁成功
if (!isLock) {
// 获取锁失败,直接返回失败或者重试
log.error("不允许重复下单!");
return;
}
try {
//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
proxy.createVoucherOrder(voucherOrder);
} finally {
// 释放锁
redisLock.unlock();
}
}
//a
private BlockingQueue<VoucherOrder> orderTasks =new ArrayBlockingQueue<>(1024 * 1024);
@Override
public Result seckillVoucher(Long voucherId) {
Long userId = UserHolder.getUser().getId();
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
VoucherOrder voucherOrder = new VoucherOrder();
// 2.3.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 2.4.用户id
voucherOrder.setUserId(userId);
// 2.5.代金券id
voucherOrder.setVoucherId(voucherId);
// 2.6.放入阻塞队列
orderTasks.add(voucherOrder);
//3.获取代理对象
proxy = (IVoucherOrderService)AopContext.currentProxy();
//4.返回订单id
return Result.ok(orderId);
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
log.error("用户已经购买过了");
return ;
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
log.error("库存不足");
return ;
}
save(voucherOrder);
}总结:
秒杀业务的优化思路是什么?
先利用Redis完成库存余量、一人一单判断,完成抢单业务
再将下单业务放入阻塞队列,利用独立线程异步下单
基于阻塞队列的异步秒杀存在哪些问题?
内存限制问题
数据安全问题
Redis消息队列
认识Redis消息队列
什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:
消息队列:存储和管理消息,也被称为消息代理(Message Broker)
生产者:发送消息到消息队列
消费者:从消息队列获取消息并处理消息

使用队列的好处在于 解耦: 所谓解耦,举一个生活中的例子就是:快递员(生产者)把快递放到快递柜里边(Message Queue)去,我们(消费者)从快递柜里边去拿东西,这就是一个异步,如果耦合,那么这个快递员相当于直接把快递交给你,这事固然好,但是万一你不在家,那么快递员就会一直等你,这就浪费了快递员的时间,所以这种思想在我们日常开发中,是非常有必要的。
这种场景在我们秒杀中就变成了:我们下单之后,利用redis去进行校验下单条件,再通过队列把消息发送出去,然后再启动一个线程去消费这个消息,完成解耦,同时也加快我们的响应速度。
这里我们可以使用一些现成的mq,比如kafka,rabbitmq等等,但是呢,如果没有安装mq,我们也可以直接使用redis提供的mq方案,降低我们的部署和学习成本。
基于List实现消息队列
基于List结构模拟消息队列
消息队列(Message Queue),字面意思就是存放消息的队列。而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。
队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。 不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。

基于List的消息队列有哪些优缺点? 优点:
利用Redis存储,不受限于JVM内存上限
基于Redis的持久化机制,数据安全性有保证
可以满足消息有序性
缺点:
无法避免消息丢失
只支持单消费者
基于PubSub的消息队列
PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。
SUBSCRIBE channel [channel] :订阅一个或多个频道 PUBLISH channel msg :向一个频道发送消息 PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道

基于PubSub的消息队列有哪些优缺点? 优点:
- 采用发布订阅模型,支持多生产、多消费
缺点:
不支持数据持久化
无法避免消息丢失
消息堆积有上限,超出时数据丢失
基于Stream的消息队列
Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。
发送消息的命令:

例如:

读取消息的方式之一:XREAD

例如:

XREAD阻塞方式,读取最新的消息:

在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,伪代码如下

STREAM类型消息队列的XREAD命令特点:
消息可回溯
一个消息可以被多个消费者读取
可以阻塞读取
有消息漏读的风险
对比

点赞功能
@GetMapping("/likes/{id}")
public Result queryBlogLikes(@PathVariable("id") Long id) {
//修改点赞数量
blogService.update().setSql("liked = liked +1 ").eq("id",id).update();
return Result.ok();
}问题分析:这种方式会导致一个用户无限点赞,明显是不合理的
造成这个问题的原因是,我们现在的逻辑,发起请求只是给数据库+1,所以才会出现这个问题。
完善点赞功能
需求:
同一个用户只能点赞一次,再次点击则取消点赞
如果当前用户已经点赞,则点赞按钮高亮显示(前端已实现,判断字段Blog类的isLike属性)
实现步骤:
给Blog类中添加一个isLike字段,标示是否被当前用户点赞
修改点赞功能,利用Redis的set集合判断是否点赞过,未点赞过则点赞数+1,已点赞过则点赞数-1
修改根据id查询Blog的业务,判断当前登录用户是否点赞过,赋值给isLike字段
修改分页查询Blog业务,判断当前登录用户是否点赞过,赋值给isLike字段
为什么采用set集合:
因为我们的数据是不能重复的,当用户操作过之后,无论他怎么操作,都是
具体步骤:
1、在Blog 添加一个字段
@TableField(exist = false)
private Boolean isLike;2、修改代码
@Override
public Result likeBlog(Long id){
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
// 2.判断当前登录用户是否已经点赞
String key = BLOG_LIKED_KEY + id;
Boolean isMember = stringRedisTemplate.opsForSet().isMember(key, userId.toString());
if(BooleanUtil.isFalse(isMember)){
//3.如果未点赞,可以点赞
//3.1 数据库点赞数+1
boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
//3.2 保存用户到Redis的set集合
if(isSuccess){
stringRedisTemplate.opsForSet().add(key,userId.toString());
}
}else{
//4.如果已点赞,取消点赞
//4.1 数据库点赞数-1
boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
//4.2 把用户从Redis的set集合移除
if(isSuccess){
stringRedisTemplate.opsForSet().remove(key,userId.toString());
}
}排行榜功能
在探店笔记的详情页面,应该把给该笔记点赞的人显示出来,比如最早点赞的TOP5,形成点赞排行榜:
之前的点赞是放到set集合,但是set集合是不能排序的,所以这个时候,咱们可以采用一个可以排序的set集合,就是咱们的sortedSet。
所有点赞的人,需要是唯一的,所以我们应当使用set或者是sortedSet
其次我们需要排序,就可以直接锁定使用sortedSet

修改代码
BlogServiceImpl
点赞逻辑代码
@Override
public Result likeBlog(Long id) {
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
// 2.判断当前登录用户是否已经点赞
String key = BLOG_LIKED_KEY + id;
Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
if (score == null) {
// 3.如果未点赞,可以点赞
// 3.1.数据库点赞数 + 1
boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
// 3.2.保存用户到Redis的set集合 zadd key value score
if (isSuccess) {
stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
}
} else {
// 4.如果已点赞,取消点赞
// 4.1.数据库点赞数 -1
boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
// 4.2.把用户从Redis的set集合移除
if (isSuccess) {
stringRedisTemplate.opsForZSet().remove(key, userId.toString());
}
}
return Result.ok();
}
private void isBlogLiked(Blog blog) {
// 1.获取登录用户
UserDTO user = UserHolder.getUser();
if (user == null) {
// 用户未登录,无需查询是否点赞
return;
}
Long userId = user.getId();
// 2.判断当前登录用户是否已经点赞
String key = "blog:liked:" + blog.getId();
Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
blog.setIsLike(score != null);
}点赞列表查询列表
BlogController
@GetMapping("/likes/{id}")
public Result queryBlogLikes(@PathVariable("id") Long id) {
return blogService.queryBlogLikes(id);
}BlogService
@Override
public Result queryBlogLikes(Long id) {
String key = BLOG_LIKED_KEY + id;
// 1.查询top5的点赞用户 zrange key 0 4
Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
if (top5 == null || top5.isEmpty()) {
return Result.ok(Collections.emptyList());
}
// 2.解析出其中的用户id
List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
String idStr = StrUtil.join(",", ids);
// 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)
List<UserDTO> userDTOS = userService.query()
.in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list()
.stream()
.map(user -> BeanUtil.copyProperties(user, UserDTO.class))
.collect(Collectors.toList());
// 4.返回
return Result.ok(userDTOS);
}用户签到
我们针对签到功能完全可以通过mysql来完成,比如说以下这张表

用户一次签到,就是一条记录,假如有1000万用户,平均每人每年签到次数为10次,则这张表一年的数据量为 1亿条
每签到一次需要使用(8 + 8 + 1 + 1 + 3 + 1)共22 字节的内存,一个月则最多需要600多字节
我们如何能够简化一点呢?其实可以考虑小时候一个挺常见的方案,就是小时候,咱们准备一张小小的卡片,你只要签到就打上一个勾,我最后判断你是否签到,其实只需要到小卡片上看一看就知道了
我们可以采用类似这样的方案来实现我们的签到需求。
我们按月来统计用户签到信息,签到记录为1,未签到则记录为0.
把每一个bit位对应当月的每一天,形成了映射关系。用0和1标示业务状态,这种思路就称为位图(BitMap)。这样我们就用极小的空间,来实现了大量数据的表示
Redis中是利用string类型数据结构实现BitMap,因此最大上限是512M,转换为bit则是 2^32个bit位。

BitMap的操作命令有:
SETBIT:向指定位置(offset)存入一个0或1
GETBIT :获取指定位置(offset)的bit值
BITCOUNT :统计BitMap中值为1的bit位的数量
BITFIELD :操作(查询、修改、自增)BitMap中bit数组中的指定位置(offset)的值
BITFIELD_RO :获取BitMap中bit数组,并以十进制形式返回
BITOP :将多个BitMap的结果做位运算(与 、或、异或)
BITPOS :查找bit数组中指定范围内第一个0或1出现的位置
需求实现
需求:实现签到接口,将当前用户当天签到信息保存到Redis中
思路:我们可以把年和月作为bitMap的key,然后保存到一个bitMap中,每次签到就到对应的位上把数字从0变成1,只要对应是1,就表明说明这一天已经签到了,反之则没有签到。
我们通过接口文档发现,此接口并没有传递任何的参数,没有参数怎么确实是哪一天签到呢?这个很容易,可以通过后台代码直接获取即可,然后到对应的地址上去修改bitMap。

代码
UserController
@PostMapping("/sign")
public Result sign(){
return userService.sign();
}UserServiceImpl
@Override
public Result sign() {
// 1.获取当前登录用户
Long userId = UserHolder.getUser().getId();
// 2.获取日期
LocalDateTime now = LocalDateTime.now();
// 3.拼接key
String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
String key = USER_SIGN_KEY + userId + keySuffix;
// 4.获取今天是本月的第几天
int dayOfMonth = now.getDayOfMonth();
// 5.写入Redis SETBIT key offset 1
stringRedisTemplate.opsForValue().setBit(key, dayOfMonth - 1, true);
return Result.ok();
}用户签到统计
问题1: 什么叫做连续签到天数? 从最后一次签到开始向前统计,直到遇到第一次未签到为止,计算总的签到次数,就是连续签到天数。

Java逻辑代码:获得当前这个月的最后一次签到数据,定义一个计数器,然后不停的向前统计,直到获得第一个非0的数字即可,每得到一个非0的数字计数器+1,直到遍历完所有的数据,就可以获得当前月的签到总天数了
**问题2:**如何得到本月到今天为止的所有签到数据?
BITFIELD key GET u[dayOfMonth] 0
假设今天是10号,那么我们就可以从当前月的第一天开始,获得到当前这一天的位数,是10号,那么就是10位,去拿这段时间的数据,就能拿到所有的数据了,那么这10天里边签到了多少次呢?统计有多少个1即可。
问题3:如何从后向前遍历每个bit位?
注意:bitMap返回的数据是10进制,哪假如说返回一个数字8,那么我哪儿知道到底哪些是0,哪些是1呢?我们只需要让得到的10进制数字和1做与运算就可以了,因为1只有遇见1 才是1,其他数字都是0 ,我们把签到结果和1进行与操作,每与一次,就把签到结果向右移动一位,依次内推,我们就能完成逐个遍历的效果了。
需求:实现下面接口,统计当前用户截止当前时间在本月的连续签到天数
有用户有时间我们就可以组织出对应的key,此时就能找到这个用户截止这天的所有签到记录,再根据这套算法,就能统计出来他连续签到的次数了。

代码
UserController
@GetMapping("/sign/count")
public Result signCount(){
return userService.signCount();
}UserServiceImpl
@Override
public Result signCount() {
// 1.获取当前登录用户
Long userId = UserHolder.getUser().getId();
// 2.获取日期
LocalDateTime now = LocalDateTime.now();
// 3.拼接key
String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
String key = USER_SIGN_KEY + userId + keySuffix;
// 4.获取今天是本月的第几天
int dayOfMonth = now.getDayOfMonth();
// 5.获取本月截止今天为止的所有的签到记录,返回的是一个十进制的数字 BITFIELD sign:5:202203 GET u14 0
List<Long> result = stringRedisTemplate.opsForValue().bitField(
key,
BitFieldSubCommands.create()
.get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0)
);
if (result == null || result.isEmpty()) {
// 没有任何签到结果
return Result.ok(0);
}
Long num = result.get(0);
if (num == null || num == 0) {
return Result.ok(0);
}
// 6.循环遍历
int count = 0;
while (true) {
// 6.1.让这个数字与1做与运算,得到数字的最后一个bit位 // 判断这个bit位是否为0
if ((num & 1) == 0) {
// 如果为0,说明未签到,结束
break;
}else {
// 如果不为0,说明已签到,计数器+1
count++;
}
// 把数字右移一位,抛弃最后一个bit位,继续下一个bit位
num >>>= 1;
}
return Result.ok(count);
}UV统计
首先我们搞懂两个概念:
UV:全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。
PV:全称Page View,也叫页面访问量或点击量,用户每访问网站的一个页面,记录1次PV,用户多次打开页面,则记录多次PV。往往用来衡量网站的流量。
通常来说UV会比PV大很多,所以衡量同一个网站的访问量,我们需要综合考虑很多因素,所以我们只是单纯的把这两个值作为一个参考值
UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖,那怎么处理呢?
Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。相关算法原理大家可以参考:https://juejin.cn/post/6844903785744056333#heading-0 Redis中的HLL是基于string结构实现的,单个HLL的内存永远小于16kb,内存占用低的令人发指!作为代价,其测量结果是概率性的,有小于0.81%的误差。不过对于UV统计来说,这完全可以忽略。

测试百万数据的统计
测试思路:我们直接利用单元测试,向HyperLogLog中添加100万条数据,看看内存占用和统计效果如何。

经过测试:我们会发生他的误差是在允许范围内,并且内存占用极小